
RAG on GPU Max

Introduction
In 2023, Intel launched its large-scale GPU, the Intel GPU Max, targeting high-performance computing (HPC) and AI
applications at a cost-efficient price. Around the same time, OpenAI revolutionized the AI landscape with ChatGPT,
reigniting the AI hype with generative AI (GenAI). As organizations began to adopt large language models (LLMs) like
ChatGPT, they quickly recognized both the potential efficiency gains for employees and the risks associated with
uncontrolled use. Publicly available LLMs can learn and retain information from users, posing a risk of inadvertently
exposing confidential company data.

RAG to guardrail LLMs for enterprises
To address this concern, enterprises can deploy LLMs combined with Retrieval-Augmented Generation (RAG) on their
own IT infrastructure, whether on-premises or in a cloud-based virtual data center. This approach ensures that the LLM
is isolated from public use, safeguarding sensitive information. Additionally, RAG allows enterprises to provide secure,
confidential information as a knowledge base to the LLM and establish guardrails without the need for expensive and
resource-intensive model training or fine-tuning. Unlike training and fine-tuning, which require significant computational
resources, RAG is less compute-intensive and more feasible for enterprises to implement.

Intel’s GPU Max RAG
Since RAG is the lowest-hanging fruit to provide a safe and tailored LMMs use for enterprises, I built a RAG for Intel’s GPU
Max.
To do that , I adapted the code from Nicholas Renotte available here: https://github.com/nicknochnack/Llama2RAG
That RAG implementation is intended for Nvidia GPUs, so I modified it to run on Intel GPU Max. You can see my code and
tutorial here: https://github.com/TheFavAI/Intel-GPU-Max-RAG
A common misconception is that you need to convert CUDA code, running on Nvidia GPUs, into DPC++, running on Intel
GPUs. The thing is that it isn’t the case. Most AI Engineer, Data scientist, etc. code in Python. And by using Python, they
usually don’t need to code a single line of CUDA or DPC++. Indeed, everything is handled by the libraries used in their
python codes!
The adaptions I had to do to the code of Nicolas Renotte are minimal.

https://github.com/nicknochnack/Llama2RAG
https://github.com/TheFavAI/Intel-GPU-Max-RAG

Changes to the code
Added line 5 :
import intel_extension_for_pytorch as ipex

Deletion of “, load_in_8bit=True” and addition of “.to("xpu")” line 25-27:
model = AutoModelForCausalLM.from_pretrained(name, cache_dir='./model/', use_auth_token=auth_token,
torch_dtype=torch.float16, rope_scaling={"type": "dynamic", "factor": 2}).to("xpu")

Added line 28:
model = ipex.optimize(model)

Change to the pdf loader functions, but it has nothing to do with the RAG itself:
file_path_str = str(Path('./data/annualreport.pdf'))
documents = loader.load(file_path=file_path_str, metadata=True)

How does it look?
Here is the code running. You can see the GPU being at 100% utilization to provide the answer as fast as possible.

The result
Here is an example of the answer the RAG can provider. The input is a company’s financials, a huge pdf of more than 350
pages with a lot of numbers and complex financial notions. I asked an industry specific question to the RAG. And it
manages to successfully answer as you can see.

Next steps
• As you can see, the UI isn’t as good as it could be.
• The RAG only takes 1 document as an input, even though the document is huge. The RAG would need a database

to handle multiple documents.

