
Local LLM on a Laptop 

 

Introduction 
OpenAI revolutionized the AI landscape with ChatGPT, reigniting the AI hype with generative AI (GenAI). As organizations 
began to adopt large language models (LLMs) like ChatGPT, they quickly recognized both the potential efficiency gains 
for employees and the risks associated with uncontrolled use. Publicly available LLMs can learn and retain information 
from users, posing a risk of inadvertently exposing confidential company data. 

A local LLM for privacy  
To address this concern, one of the solutions would be to have the LLM directly running on the laptops. This approach 
ensures that the LLM is isolated from the internet and the public use, safeguarding your sensitive information. Since no 
information is sent through the web, it ensures better privacy by reducing the attack surface. Additionally, it provides a 
reduced latency, which enhance greatly the user experience. But most of all, it doesn’t need internet to run.  

How can that work if ChatGPT and other LLM must run in the cloud?? 
First, multiple kinds of models exist. Some are big with dozens of billions of parameters like Llama2 70B (70 billion 
parameter) or ChatGPT 4o. These kinds of LLMs require a lot of compute capabilities and a huge quantity of memory. 
That’s the reason why they can only run in data centers as of today, with very powerful GPUs and AI Accelerators. But 
smaller LLMs exist, going down to a few billion parameters, and a weight of only a few Gb. This is the case with 
Microsoft's Phi 2. The model has 2.7 billion parameters, and depending on the quantization method, it can weight less 
than 2Gb in GGUF format. Of course, the bigger the model, the better it is usually. But for its size, Phi 2 gives compelling 
answers at a very low latency with a high token throughput (see performance results below). 

Leverage Intel accelerators 
Since many years, Intel has worked to accelerate AI workloads. Whether it was through hardware accelerators with its 
NPU, or new instruction sets like VNNI, or even software with the Intel distribution of TensorFlow and the Intel neural 
compressor. Here, I tried to leverage the VNNI instruction set. That instruction set fusion 3 operation into 1 for Int8 
models while leveraging AVX512. AVX512 is a longer register, made of 512 bits, which allows the CPU to make more 
operations in one shot. Usually, registers are 256 or 128 bits wide. The speed up is of the same order of magnitude as the 
number of bits. However, it isn’t the case since the frequency usually decreases slightly as the number of bits by register 



increases. The increase of bits offloads the decrease of frequency, resulting in some speed up anyway. Usually, the 
expected speed up is about 2 to a little bit less than 3x. My application relies on llama.cpp, so I built it to leverage 
AVX512 VNNI, but I also tried to build it without taking these instruction sets into account. Below are my results on an 
Intel i7-1165G7 @ 2.80GHz with 8Gb of RAM, and Windows 11. 

 Without AVX512_VNNI 
llama_print_timings: load time = 534.72 ms 
llama_print_timings: sample time = 88.18 ms / 400 runs (0.22 ms per token, 4536.33 tokens per second) 
llama_print_timings: prompt eval time = 680.21 ms / 15 tokens (45.35 ms per token, 22.05 tokens per second) 
llama_print_timings: eval time = 47219.19 ms / 399 runs (118.34 ms per token, 8.45 tokens per second) 
llama_print_timings: total time = 48160.59 ms / 414 tokens 

 

With AVX512_VNNI 

llama_print_timings: load time = 582.99 ms 
llama_print_timings: sample time = 113.54 ms / 400 runs (0.28 ms per token, 3522.93 tokens per second) 
llama_print_timings: prompt eval time = 629.88 ms / 15 tokens (41.99 ms per token, 23.81 tokens per second) 
llama_print_timings: eval time = 50896.78 ms / 399 runs (127.56 ms per token, 7.84 tokens per second) 
llama_print_timings: total time = 52056.90 ms / 414 tokens 

The results are surprising. AVX512_VNNI doesn’t enhance the performance as expected. However, this isn’t an issue on 
Intel side. I couldn’t dig deeper but here are my 2 cents: 

• Maybe the model doesn’t use a lot of the kind of operations benefitting from the AVX512_VNNI. In that case, it 
doesn’t benefit from the 3 in 1 fusion of operation and just face the lower frequency. 

• Llama.cpp is quite recent. We may expect it to not fully leverage any feature available in every CPU on the 
market. When I was working on that project, the enablement of AVX_512 was a hot topic on the llama.cpp github. 

How does it look? 
Here is the app I built to display my LLM results. You can see the CPU being at 100% utilization to provide the answer as 
fast as possible. 

 



The result 
As you can see above, the LLM is able to provide answers to basic questions at a user-friendly speed of almost 9 tokens 
per second. The model doesn’t weight too much so it can run in the meantime of other applications like Teams or some 
Office 365 applications without any issue. However, it was keen to hallucinations, trying to always match the output 
token limit I set.  

Next steps 
• As you can see, the UI isn’t as good as it could be. 
• My AI Assistant would need some prompt work to prevent hallucination. If the answer is short, then it should give 

a short answer and not try to match the limit of token allowed. 
• I figured out a way to make the input prompt bigger thanks to the domain extension. I should try to implement it in 

the future as it could be very useful for summaries.  


